Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 853
1.
Br J Radiol ; 2024 May 11.
Article En | MEDLINE | ID: mdl-38733577

OBJECTIVES: To investigate the feasibility of synthetic MRI (syMRI), diffusion-weighted imaging (DWI) and their combination with morphological features for differentiating nasopharyngeal lymphoma (NPL) from nasopharyngeal carcinoma (NPC). METHODS: Sixty-nine patients with nasopharyngeal tumors (NPL, n = 22; NPC, n = 47) who underwent syMRI and DWI were retrospectively enrolled between October 2020 and May 2022. syMRI and DWI quantitative parameters (T1, T2, PD, ADC), and morphological features were obtained. Diagnostic performance was assessed by independent sample t-test, chi-square test, logistic regression analysis, receiver operating characteristic curve (ROC), and DeLong test. RESULTS: NPL has significantly lower T2, PD, and ADC values compared to NPC (all P < 0.05), whereas no significant difference was found in T1 value between these two entities (P > 0.05). The morphological features of tumor type, skull-base involvement, Waldeyer ring involvement, and lymph nodes involvement region were significantly different between NPL and NPC (all P < 0.05). The syMRI (T2+PD) model has better diagnostic efficacy, with AUC, sensitivity, specificity, and accuracy of 0.875, 77.27%, 89.36%, and 85.51%. Compared with syMRI model, syMRI+Morph (PD+Waldeyer ring involvement+lymph nodes involvement region), syMRI+DWI (T2+PD+ADC), and syMRI+DWI+Morph (PD+ADC+skull base involvement+Waldeyer ring involvement) models can further improve the diagnostic efficiency (all P < 0.05). Furthermore, syMRI+DWI+Morph model has excellent diagnostic performance, with AUC, sensitivity, specificity, and accuracy of 0.986, 95.47%, 97.87%, and 97.10%, respectively. CONCLUSION: syMRI and DWI quantitative parameters were helpful in discriminating NPL from NPC. syMRI+DWI+Morph model has the excellent diagnostic efficiency in differentiating these two entities. ADVANCES IN KNOWLEDGE: syMRI+DWI+morphological feature method can differentiate NPL from NPC with excellent diagnostic performance.

2.
Article En | MEDLINE | ID: mdl-38709947

The magnetic alignment of molecules, which exploits the anisotropy of diamagnetic susceptibility, provides a clean and versatile approach to the structural manipulation of semiconducting polymers. Here, the magnetic-alignment dynamics of two molecular-weight (MW) batches of a diketopyrrolopyrrole (DPP)-based copolymer (PDVT-8) were investigated. Microstructural characterizations revealed that the magnetically aligned, high-MW (Mn = 53.7 kDa) PDVT-8 film exhibited a higher degree of backbone chain alignment and film crystallinity compared with the low-MW (Mn = 17.6 kDa) PDVT-8 film grown via the same magnetic alignment method. We found that as the MW increases, the degree of preaggregation of the polymer molecules in solution significantly increases and the aggregation mode changes from H-aggregation to J-aggregation through a cooperative assembly mechanism. These events improved the responsiveness of high-MW polymer molecules to magnetic fields. Field-effect transistors based on the magnetic aligned high-MW PDVT-8 films exhibited a 6.8-fold increase in hole mobility compared to the spin-coated films, along with a mobility anisotropy ratio of 12.6. This work establishes a significant correlation among chain aggregation behavior in solution, polymer film microstructures, magnetic responsiveness, and carrier transport performance in donor-acceptor polymer systems.

3.
J Control Release ; 370: 318-338, 2024 May 02.
Article En | MEDLINE | ID: mdl-38692438

In recent years, the intersection of the academic and medical domains has increasingly spotlighted the utilization of biomaterials in radioactive disease treatment and radiation protection. Biomaterials, distinguished from conventional molecular pharmaceuticals, offer a suite of advantages in addressing radiological conditions. These include their superior biological activity, chemical stability, exceptional histocompatibility, and targeted delivery capabilities. This review comprehensively delineates the therapeutic mechanisms employed by various biomaterials in treating radiological afflictions impacting the skin, lungs, gastrointestinal tract, and hematopoietic systems. Significantly, these nanomaterials function not only as efficient drug delivery vehicles but also as protective agents against radiation, mitigating its detrimental effects on the human body. Notably, the strategic amalgamation of specific biomaterials with particular pharmacological agents can lead to a synergistic therapeutic outcome, opening new avenues in the treatment of radiation- induced diseases. However, despite their broad potential applications, the biosafety and clinical efficacy of these biomaterials still require in-depth research and investigation. Ultimately, this review aims to not only bridge the current knowledge gaps in the application of biomaterials for radiation-induced diseases but also to inspire future innovations and research directions in this rapidly evolving field.

4.
Traffic Inj Prev ; : 1-9, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709142

OBJECTIVE: Road familiarity is an important factor affecting drivers' visual features. Analyzing the quantitative correlation between drivers' road familiarity and visual features in complex environment is of great help to improve driving safety. However, there are few relevant studies. This paper takes urban plane intersection as the environmental object to explore the correlation between drivers' glance behavior and road familiarity, and conducts research on the quantitative evaluation model of road familiarity based on this correlation. METHOD: First, a real vehicle experiment was carried out to record the eye movement data of 24 drivers with different road familiarity. The driver's visual field plane was divided into 10 areas of interest (AOIs) based on the driver's perspective. Three measures, including average glance duration, number of glances, and fixation transition probabilities between AOIs at urban plane intersections, were extracted. Finally, based on the experimental results, the driver road familiarity evaluation model was constructed using the factor analysis method. RESULTS: There are significant differences between unfamiliar and familiar drivers regarding the average glance duration toward the forward (FW) area, the left window (LW) area, the left rearview mirror (LVM) area and the left forward (LF) area, the number of glances toward the other (OT) area, and the fixation transition probabilities of LW→RF (right forward), LF→LF, LF→FW, FW→LW, FW→FW, FW→RVM (right rearview mirror). The comprehensive evaluation results show that the accuracy rate of the driver road familiarity evaluation model reached 83%. CONCLUSIONS: This paper revealed that there is a strong correlation between drivers' road familiarity and drivers' glance behavior. Based on this correlation, we can include road familiarity as a part of drivers' working status and establish a high accuracy evaluation model of driver road familiarity. The conclusion of this paper can provide some reference for the humanized design and improvement of advanced driving assistance system, which is of great significance for reducing the driving workload of drivers and improving the driving safety.

5.
Front Bioeng Biotechnol ; 12: 1392414, 2024.
Article En | MEDLINE | ID: mdl-38605985

Succinic acid (SA), one of the 12 top platform chemicals produced from biomass, is a precursor of various high value-added derivatives. Specially, 1 mol CO2 is assimilated in 1 mol SA biosynthetic route under anaerobic conditions, which helps to achieve carbon reduction goals. In this review, methods for enhanced CO2 fixation in SA production and utilization of waste biomass for SA production are reviewed. Bioelectrochemical and bioreactor coupling systems constructed with off-gas reutilization to capture CO2 more efficiently were highlighted. In addition, the techno-economic analysis and carbon sequestration benefits for the synthesis of bio-based SA from CO2 and waste biomass are analyzed. Finally, a droplet microfluidics-based high-throughput screening technique applied to the future bioproduction of SA is proposed as a promising approach.

6.
Nat Commun ; 15(1): 3061, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594238

Radiation mapping has attracted widespread research attention and increased public concerns on environmental monitoring. Regarding materials and their configurations, radiation detectors have been developed to identify the position and strength of the radioactive sources. However, due to the complex mechanisms of radiation-matter interaction and data limitation, high-performance and low-cost radiation mapping is still challenging. Here, we present a radiation mapping framework using Tetris-inspired detector pixels. Applying inter-pixel padding for enhancing contrast between pixels and neural networks trained with Monte Carlo (MC) simulation data, a detector with as few as four pixels can achieve high-resolution directional prediction. A moving detector with Maximum a Posteriori (MAP) further achieved radiation position localization. Field testing with a simple detector has verified the capability of the MAP method for source localization. Our framework offers an avenue for high-quality radiation mapping with simple detector configurations and is anticipated to be deployed for real-world radiation detection.

7.
Lipids Health Dis ; 23(1): 101, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600581

BACKGROUND: The objective was to investigate the efficacy of different doses of levothyroxine therapy among pregnant women exhibiting high-normal thyroid stimulating hormone levels and positive thyroid peroxidase antibodies throughout the first half of pregnancy. METHODS: Pregnant women exhibiting high-normal thyroid stimulating hormone levels and thyroid peroxidase antibodies positivity throughout the initial half of pregnancy were selected from January 2021 to September 2023. Based on the different doses of levothyroxine, the pregnant women were categorized into the nonintervention group (G0, 122 women), 25 µg levothyroxine intervention group (G25, 69 women), and 50 µg levothyroxine intervention group (G50, 58 women). Serum parameters, gastrointestinal symptoms, small intestinal bacterial overgrowth (SIBO), maternal and neonatal outcomes were compared after the intervention among the three groups. RESULTS: After the intervention, in the G25 and G50 groups, the thyroid stimulating hormone, triglyceride and low-density lipoprotein levels were notably less in contrast to those in the G0 group (P < 0.05). The rates of abdominal distension and SIBO in the G25 and G50 groups were notably lower in contrast to the G0 group (P = 0.043 and 0.040, respectively). The G50 group had a lower rate of spontaneous abortion and premature membrane rupture than the G0 group (P = 0.01 and 0.015, respectively). Before 11+ 2 weeks of gestation and at thyroid peroxidase antibodies levels ≥ 117 IU/mL, in contrast to the G0 group, the G50 group experienced a decreased rate of spontaneous abortion (P = 0.008). The G50 group had significantly higher newborn weight than the G0 group (P = 0.014), as well as a notably longer newborn length than the G0 and G25 groups (P = 0.005). CONCLUSIONS: For pregnant women with high-normal thyroid stimulating hormone levels and thyroid peroxidase antibodies positive during the first half of pregnancy, supplementation with 50 µg levothyroxine was more effective in improving their blood lipid status and gastrointestinal symptoms, reducing the incidence of SIBO and premature rupture of membranes, and before 11+2 weeks, TPOAb ≥ 117 IU/mL proved more beneficial in mitigating the risk of spontaneous abortion.


Abortion, Spontaneous , Thyroxine , Infant, Newborn , Female , Pregnancy , Humans , Thyroxine/therapeutic use , Pregnant Women , Iodide Peroxidase , Autoantibodies , Thyrotropin
8.
Biol Direct ; 19(1): 29, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654312

BACKGROUND: Oocyte quality is critical for the mammalian reproduction due to its necessity on fertilization and early development. During aging, the declined oocytes showing with organelle dysfunction and oxidative stress lead to infertility. AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase which is important for energy homeostasis for metabolism. Little is known about the potential relationship between AMPK with oocyte aging. RESULTS: In present study we reported that AMPK was related with low quality of oocytes under post ovulatory aging and the potential mechanism. We showed the altered AMPK level during aging and inhibition of AMPK activity induced mouse oocyte maturation defect. Further analysis indicated that similar with its upstream regulator PKD1, AMPK could reduce ROS level to avoid oxidative stress in oocytes, and this might be due to its regulation on mitochondria function, since loss of AMPK activity induced abnormal distribution, reduced ATP production and mtDNA copy number of mitochondria. Besides, we also found that the ER and Golgi apparatus distribution was aberrant after AMPK inhibition, and enhanced lysosome function was also observed. CONCLUSIONS: Taken together, these data indicated that AMPK is important for the organelle function to reduce oxidative stress during oocyte meiotic maturation.


AMP-Activated Protein Kinases , Oocytes , Oxidative Stress , Animals , Female , Mice , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Cellular Senescence , Mitochondria/metabolism , Oocytes/metabolism , Organelles/metabolism , Reactive Oxygen Species/metabolism
9.
BMC Infect Dis ; 24(1): 457, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38689228

BACKGROUND: HIV-tuberculosis (HIV-TB) co-infection is a significant public health concern worldwide. TB delay, consisting of patient delay, diagnostic delay, treatment delay, increases the risk of adverse anti-TB treatment (ATT) outcomes. Except for individual level variables, differences in regional levels have been shown to impact the ATT outcomes. However, few studies appropriately considered possible individual and regional level confounding variables. In this study, we aimed to assess the association of TB delay on treatment outcomes in HIV-TB co-infected patients in Liangshan Yi Autonomous Prefecture (Liangshan Prefecture) of China, using a causal inference framework while taking into account individual and regional level factors. METHODS: We conducted a study to analyze data from 2068 patients with HIV-TB co-infection in Liangshan Prefecture from 2019 to 2022. To address potential confounding bias, we used a causal directed acyclic graph (DAG) to select appropriate confounding variables. Further, we controlled for these confounders through multilevel propensity score and inverse probability weighting (IPW). RESULTS: The successful rate of ATT for patients with HIV-TB co-infection in Liangshan Prefecture was 91.2%. Total delay (OR = 1.411, 95% CI: 1.015, 1.962), diagnostic delay (OR = 1.778, 95% CI: 1.261, 2.508), treatment delay (OR = 1.749, 95% CI: 1.146, 2.668) and health system delay (OR = 1.480 95% CI: (1.035, 2.118) were identified as risk factors for successful ATT outcome. Sensitivity analysis demonstrated the robustness of these findings. CONCLUSIONS: HIV-TB co-infection prevention and control policy in Liangshan Prefecture should prioritize early treatment for diagnosed HIV-TB co-infected patients. It is urgent to improve the health system in Liangshan Prefecture to reduce delays in diagnosis and treatment.


Coinfection , HIV Infections , Propensity Score , Tuberculosis , Humans , HIV Infections/complications , HIV Infections/drug therapy , Female , Male , Coinfection/drug therapy , Coinfection/epidemiology , Adult , China/epidemiology , Tuberculosis/drug therapy , Tuberculosis/complications , Middle Aged , Treatment Outcome , Antitubercular Agents/therapeutic use , Time-to-Treatment/statistics & numerical data , Delayed Diagnosis
10.
Adv Sci (Weinh) ; 11(18): e2400845, 2024 May.
Article En | MEDLINE | ID: mdl-38520732

Complete remission of colorectal cancer (CRC) is still unachievable in the majority of patients by common fractionated radiotherapy, leaving risks of tumor metastasis and recurrence. Herein, clinical CRC samples demonstrated a difference in the phosphorylation of translation initiation factor eIF2α (p-eIF2α) and the activating transcription factor 4 (ATF4), whose increased expression by initial X-ray irradiation led to the resistance to subsequent radiotherapy. The underlying mechanism is studied in radio-resistant CT26 cells, revealing that the incomplete mitochondrial outer membrane permeabilization (iMOMP) triggered by X-ray irradiation is key for the elevated expression of p-eIF2α and ATF4, and therefore radio-resistance. This finding guided to discover that metformin and 2-DG are synergistic in reversing radio resistance by inhibiting p-eIF2α and ATF4. Liposomes loaded with metformin and 2-DG (M/D-Lipo) are thus prepared for enhancing fractionated radiotherapy of CRC, which achieved satisfactory therapeutic efficacy in both local and metastatic CRC tumors by reversing radio-resistance and preventing T lymphocyte exhaustion.


Colorectal Neoplasms , Liposomes , Metformin , Mitochondria , Radiation Tolerance , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/radiotherapy , Colorectal Neoplasms/pathology , Mice , Animals , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/radiation effects , Metformin/pharmacology , Metformin/therapeutic use , Radiation Tolerance/drug effects , Cell Line, Tumor , Disease Models, Animal , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics
11.
Am Heart J ; 273: 1-9, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38508571

BACKGROUND: Kawasaki disease is a pediatric acute systemic vasculitis that specifically involves the coronary arteries. Timely initiation of immunoglobulin plus aspirin is necessary for diminishing the incidence of coronary artery abnormalities (CAAs). The optimal dose of aspirin, however, remains controversial. The trial aims to evaluate if low-dose aspirin is noninferior to moderate-dose in reducing the risk of CAAs during the initial treatment of Kawasaki disease. METHODS: This is a multi-center, prospective, randomized, open-label, blinded endpoint, noninferiority trial to be conducted in China. The planned study duration is from 2023 to 2026. Data will be analyzed according to intention-to-treat principles. Participants are children and adolescents under the age of 18 with Kawasaki disease, recruited from the inpatient units. A sample size of 1,346 participants will provide 80% power with a one-sided significance level of 0.025. Qualifying children will be randomized (1:1) to receive either intravenous immunoglobulin (2 g/kg) plus oral moderate-dose aspirin (30-50 mg·kg-1·d-1) until the patient is afebrile for at least 48 hours, or immunoglobulin plus low-dose aspirin (3-5 mg·kg-1·d-1) as initial treatment. The primary outcome will be the occurrence of CAAs at 8 weeks after immunoglobulin infusion. Independent blinded pediatric cardiologists will assess the primary endpoint using echocardiography. CONCLUSIONS: There is a shortage of consensus on the dose of aspirin therapy for Kawasaki disease due to the lack of evidence. The results of our randomized trial will provide more concrete evidence for the efficacy and adverse events of low- or moderate-dose aspirin in the acute phase of Kawasaki disease. TRIAL REGISTRATION: www.chictr.org.cn: ChiCTR2300072686.

12.
Cancer Lett ; 589: 216817, 2024 May 01.
Article En | MEDLINE | ID: mdl-38492769

As the limitations of cancer immunotherapy become increasingly apparent, there is considerable anticipation regarding the utilization of biological tools to enhance treatment efficacy, particularly bacteria and their derivatives. Leveraging advances in genetic and synthetic biology technologies, engineered bacteria now play important roles far beyond those of conventional immunoregulatory agents, and they could function as tumor-targeting vehicles and in situ pharmaceutical factories. In recent years, these engineered bacteria play a role in almost every aspect of immunotherapy. It is nothing short of impressive to keep seeing different strain of bacteria modified in diverse ways for unique immunological enhancement. In this review, we have scrutinized the intricate interplay between the immune system and these engineered bacteria. These interactions generate strategies that can directly or indirectly optimize immunotherapy and even modulate the effects of combination therapies. Collectively, these engineered bacteria present a promising novel therapeutic strategy that promises to change the current landscape of immunotherapy.


Immunotherapy , Neoplasms , Humans , Immunotherapy/methods , Neoplasms/therapy , Bacteria/genetics
13.
ACS Nano ; 18(12): 9114-9127, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38477305

Immune checkpoint blockade (ICB) therapy is promising to revolutionize cancer regimens, but the low response rate and the lack of a suitable patient stratification method have impeded universal profit to cancer patients. Noninvasive positron emission tomography (PET) imaging in the whole body, upon coupling with specific biomarkers closely related to the immune response, could provide spatiotemporal information to prescribe cancer therapy. Herein, we demonstrate that antisilencing function 1a (ASF1a) could serve as a biomarker target to delineate tumor immune microenvironments by immune PET (iPET). The iPET radiotracer (68Ga-AP1) is designed to target ASF1a in tumors and predict immune response, and the signal intensity predicts anti-PD-1 (αPD-1) therapy response in a negative correlation manner. The ICB-resistant tumors with a high level of ASF1a as revealed by iPET (ASF1aHigh-iPET) are prescribed to be treated by either the combined 177Lu-labeled AP1 and αPD-1 or the standalone α particle-emitting 225Ac-labeled AP1, both achieving enhanced therapeutic efficacy and prolonged survival time. Our study not only replenishes the iPET arsenal for immune-related response evaluation by designing a reliable biomarker and a facile radiotracer but also provides optional therapeutic strategies for ICB-resistant tumors with versatile radionuclide-labeled AP1 peptides, which is promising for real-time clinical diagnosis and individualized therapy planning simultaneously.


Neoplasms , Radioisotopes , Humans , Positron-Emission Tomography/methods , Biomarkers , Peptides , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Tumor Microenvironment
14.
Nat Commun ; 15(1): 2759, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38553451

Non-small cell lung cancer (NSCLC) shows high drug resistance and leads to low survival due to the high level of mutated Tumor Protein p53 (TP53). Cisplatin is a first-line treatment option for NSCLC, and the p53 mutation is a major factor in chemoresistance. We demonstrate that cisplatin chemotherapy increases the risk of TP53 mutations, further contributing to cisplatin resistance. Encouragingly, we find that the combination of cisplatin and fluvastatin can alleviate this problem. Therefore, we synthesize Fluplatin, a prodrug consisting of cisplatin and fluvastatin. Then, Fluplatin self-assembles and is further encapsulated with poly-(ethylene glycol)-phosphoethanolamine (PEG-PE), we obtain Fluplatin@PEG-PE nanoparticles (FP NPs). FP NPs can degrade mutant p53 (mutp53) and efficiently trigger endoplasmic reticulum stress (ERS). In this study, we show that FP NPs relieve the inhibition of cisplatin chemotherapy caused by mutp53, exhibiting highly effective tumor suppression and improving the poor NSCLC prognosis.


Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Nanoparticles , Phosphatidylethanolamines , Polyethylene Glycols , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cisplatin/pharmacology , Cisplatin/therapeutic use , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Fluvastatin/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mutation
15.
J Cancer ; 15(8): 2361-2372, 2024.
Article En | MEDLINE | ID: mdl-38495504

Objective: To investigate the inhibitory effect of EVO on colorectal cancer (CRC) growth and further explore the potential mechanism involving the RTKs-mediated PI3K/AKT/p53 signaling pathway. Methods: Firstly, the inhibitory effect of EVO on CRC cells was detected in vitro by cell viability assay and colony formation assay. The effects of EVO on spatial migration and invasion capacity of cells were detected by Transwell assay. The effects of EVO on apoptosis and cycle of cells were detected by flow cytometry. Then, the molecular mechanism of EVO against CRC was revealed by qRT-PCR and Western blot. Finally, the excellent anti-tumour activity of EVO was verified by in vivo experiments. Results: The results demonstrated that EVO exerts inhibitory effects on CRC cell proliferation, invasion, and colony formation. The cell cycle assay revealed that EVO induces G1/S phase arrest. Through RNA seq, we explored the influence of EVO on the transcriptional profile of colon cancer and observed significant activation of RTKs and the PI3K/AKT pathway, along with its downstream signaling pathways. Furthermore, we observed upregulation of p53 proteins by EVO, which led to the inhibition of Bcl-2 expression and an increase in Bax expression. Consistently, EVO exhibited remarkable suppression of tumor xenograft growth in nude mice. Conclusion: This study confirmed that EVO inhibits the proliferation of CRC cells and promotes cell apoptosis. The possible mechanism of action is inhibiting the expression of the RTK protein family, activating the PI3K/AKT/p53 apoptotic signaling pathway, thereby inhibiting Bcl-2 expression and increasing Bax expression, promoting apoptosis of CRC cells. As a natural product, EVO has very high potential application value.

16.
Cell Commun Signal ; 22(1): 199, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38553728

KIFC3 is a member of Kinesin-14 family motor proteins, which play a variety of roles such as centrosome cohesion, cytokinesis, vesicles transportation and cell proliferation in mitosis. Here, we investigated the functional roles of KIFC3 in meiosis. Our findings demonstrated that KIFC3 exhibited expression and localization at centromeres during metaphase I, followed by translocation to the midbody at telophase I throughout mouse oocyte meiosis. Disruption of KIFC3 activity resulted in defective polar body extrusion. We observed aberrant meiotic spindles and misaligned chromosomes, accompanied by the loss of kinetochore-microtubule attachment, which might be due to the failed recruitment of BubR1/Bub3. Coimmunoprecipitation data revealed that KIFC3 plays a crucial role in maintaining the acetylated tubulin level mediated by Sirt2, thereby influencing microtubule stability. Additionally, our findings demonstrated an interaction between KIFC3 and PRC1 in regulating midbody formation during telophase I, which is involved in cytokinesis regulation. Collectively, these results underscore the essential contribution of KIFC3 to spindle assembly and cytokinesis during mouse oocyte meiosis.


Cytokinesis , Kinesins , Animals , Mice , Kinesins/genetics , Kinesins/metabolism , Meiosis , Microtubules/metabolism , Oocytes/metabolism
17.
Brain Pathol ; : e13253, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38454310

Memory impairment is one of the main characteristics of postoperative cognitive dysfunction. It remains elusive how postoperative pathological changes of the brain link to the memory impairment. The clinical setting of perioperation was mimicked via partial hepatectomy under sevoflurane anaesthesia together with preoperative restraint stress (Hep-Sev-stress) in mice. Memory changes were assessed with fear conditioning. The medial prefrontal cortex (mPFC)-dorsal hippocampus connectivity was evaluated with injecting neurotracer 28 days before surgery. Astrocytic activation was limited via injecting AAV-GFAP-hM4Di-eGFP into the mPFC. Astrocytic and microglial phagocytosis of synapses were visualised with co-labelling hippocampal neuronal axon terminals with PSD-95 and S100ß or Iba1. Neuroinflammation and oxidative stress status were also detected. Hep-Sev-stress impaired the memory consolidation (mean [standard error], 49.91 [2.55]% vs. 35.40 [3.97]% in the contextual memory, p = 0.007; 40.72 [2.78]% vs. 27.77 [2.22]% in cued memory, p = 0.002) and the cued memory retrieval (39.00 [3.08]% vs. 24.11 [2.06]%, p = 0.001) in mice when compared with these in the naïve controls. Hep-Sev-stress damaged the connectivity from the dorsal hippocampus to mPFC but not from the mPFC to the dorsal hippocampus and increased the astrocytic but not microglial phagocytosis of hippocampal neuronal axon terminals in the mPFC. The intervention also induced neuroinflammation and oxidative stress in the dorsal hippocampus and the mPFC in a regional-dependent manner. Limiting astrocyte activation in the mPFC alleviated memory consolidation impairment induced by Hep-Sev-stress. Postoperative memory consolidation was impaired due to astrocytic phagocytosis-induced connectivity injury from the dorsal hippocampus to the medial prefrontal cortex.

18.
Adv Sci (Weinh) ; : e2401254, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38483920

Pancreatic fibrosis (PF) is primarily characterized by aberrant production and degradation modes of extracellular matrix (ECM) components, resulting from the activation of pancreatic stellate cells (PSCs) and the pathological cross-linking of ECM mediated by lysyl oxidase (LOX) family members. The excessively deposited ECM increases matrix stiffness, and the over-accumulated reactive oxygen species (ROS) induces oxidative stress, which further stimulates the continuous activation of PSCs and advancing PF; challenging the strategy toward normalizing ECM homeostasis for the regression of PF. Herein, ROS-responsive and Vitamin A (VA) decorated micelles (named LR-SSVA) to reverse the imbalanced ECM homeostasis for ameliorating PF are designed and synthesized. Specifically, LR-SSVA selectively targets PSCs via VA, thereby effectively delivering siLOXL1 and resveratrol (RES) into the pancreas. The ROS-responsive released RES inhibits the overproduction of ECM by eliminating ROS and inactivating PSCs, meanwhile, the decreased expression of LOXL1 ameliorates the cross-linked collagen for easier degradation by collagenase which jointly normalizes ECM homeostasis and alleviates PF. This research shows that LR-SSVA is a safe and efficient ROS-response and PSC-targeted drug-delivery system for ECM normalization, which will propose an innovative and ideal platform for the reversal of PF.

19.
Int J Biol Macromol ; 263(Pt 2): 130356, 2024 Apr.
Article En | MEDLINE | ID: mdl-38395283

Mesenchymal stem cell (MSC)-based therapies show great potential in treating various diseases. However, control of the fate of injected cells needs to be improved. In this work, we developed an efficient methodology for modulating chondrogenic differentiation of MSCs. We fabricated heterospheroids with two sustained-release depots, a quaternized chitosan microsphere (QCS-MP) and a poly (lactic-co-glycolic acid) microsphere (PLGA-MP). The results show that heterospheroids composed of 1 × 104 to 5 × 104 MSCs formed rapidly during incubation in methylcellulose medium and maintained high cell viability in long-term culture. The MPs were uniformly distributed in the heterospheroids, as shown by confocal laser scanning microscopy. Incorporation of transforming growth factor beta 3 into QCS-MPs and of dexamethasone into PLGA-MPs significantly promoted the expression of chondrogenic genes and high accumulation of glycosaminoglycan in heterospheroids. Changes in crucial metabolites in the dual drug depot-engineered heterospheroids were also evaluated using 1H NMR-based metabolomics analysis to verify their successful chondrogenic differentiation. Our heterospheroid fabrication platform could be used in tissue engineering to study the effects of various therapeutic agents on stem cell fate.


Chitosan , Mesenchymal Stem Cells , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Microspheres , Chitosan/pharmacology , Polyglycolic Acid/pharmacology , Lactic Acid/pharmacology , Glycols , Delayed-Action Preparations/pharmacology , Cells, Cultured , Cell Differentiation , Chondrogenesis
20.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article En | MEDLINE | ID: mdl-38397126

Alterations in the microbiota composition, or ecological dysbiosis, have been implicated in the development of various diseases, including allergic diseases and asthma. Examining the relationship between microbiota alterations in the host and cough variant asthma (CVA) may facilitate the discovery of novel therapeutic strategies. To elucidate the diversity and difference of microbiota across three ecological niches, we performed 16S rDNA amplicon sequencing on lung, ileum, and colon samples. We assessed the levels of interleukin-12 (IL-12) and interleukin-13 (IL-13) in guinea pig bronchoalveolar lavage fluid using the enzyme-linked immunosorbent assay (ELISA). We applied Spearman's analytical method to evaluate the correlation between microbiota and cytokines. The results demonstrated that the relative abundance, α-diversity, and ß-diversity of the microbial composition of the lung, ileum, and colon varied considerably. The ELISA results indicated a substantial increase in the level of IL-13 and a decreasing trend in the level of IL-12 in the CVA guinea pigs. The Spearman analysis identified a correlation between Mycoplasma, Faecalibaculum, and Ruminococcus and the inflammatory factors in the CVA guinea pigs. Our guinea pig model showed that core microorganisms, such as Mycoplasma in the lung, Faecalibaculum in the ileum, and Ruminococcus in the colon, may play a crucial role in the pathogenesis of CVA. The most conspicuous changes in the ecological niche were observed in the guinea pig ileum, followed by the lung, while relatively minor changes were observed in the colon. Notably, the microbial structure of the ileum niche approximated that of the colon niche. Therefore, the results of this study suggest that CVA development is closely related to the dysregulation of ileal, lung, and colon microbiota and the ensuing inflammatory changes in the lung.


Cough-Variant Asthma , Microbiota , Guinea Pigs , Animals , Interleukin-13 , Lung/pathology , Ileum , Colon , Interleukin-12
...